
Lecture 2
Variables & Introduction to Problem

Solving
Dr. Mohammad Ahmad

Variables
• A variable is a name for a location in memory

• A variable must be declared by specifying the
variable's name and the type of information that it
will hold

int total;

int count, temp, result;

Multiple variables can be created in one declaration

data type variable name

Rules for valid variable names
• The name can be made up of letters, digits, the

underscore character (_), and the dollar sign

• Variable names cannot begin with a digit
• C is case sensitive - Total, total, and TOTAL

are different identifiers

• By convention, programmers use different case
styles for different types of names/identifiers, such
as
 title case for variable names - Lincoln

 upper case for constants - MAXIMUM

Variable Initialization
• A variable can be given an initial value in the

declaration

• When a variable is referenced in a program, its
current value is used

int sum = 0;
int base = 32, max = 149;

Assignment
• An assignment statement changes the value of a

variable
• The assignment operator is the = sign

total = 55;

• The value that was in total is overwritten

• You can only assign a value to a variable that is
consistent with the variable's declared type

• The expression on the right is evaluated and the
result is stored in the variable on the left

Assignment Through scanf()

 int variable;

 scanf(“%d”, &variable);

• <keyboardinput> 30

• There is not assignment operator in this case

Constants
• A constant is an identifier that is similar to a

variable except that it holds the same value during
its entire existence

• As the name implies, it is constant, not variable

• The compiler will issue an error if you try to
change the value of a constant

• In C, we use the const modifier to declare a
constant

const int MIN_HEIGHT = 69;

Constants
• Constants are useful for three important reasons

• First, they give meaning to otherwise unclear
literal values
 For example, MAX_LOAD means more than the literal 250

• Second, they facilitate program maintenance
 If a constant is used in multiple places, its value need

only be updated in one place

• Third, they formally establish that a value should
not change, avoiding inadvertent errors by other
programmers

#define primitive
• Constants can also be defined using the primitives

of the C preprocessor

• #define KMS_PER_MILE 1.609

Some Primitive Data Types
• int

• float

• double

float and double analogy

float and double analogy

float

float

double

Numeric Primitive Data
• The difference between the various numeric

primitive types is their size, and therefore the
values they can store:

Type

char
short
int
long

float
double

Storage

8 bits
16 bits
32 bits
64 bits

32 bits
64 bits

Min Value

-128
-32,768
-2,147,483,648
< -9 x 1018

+/- 3.4 x 1038 with 7 significant digits
+/- 1.7 x 10308 with 15 significant digits

Max Value

127
32,767
2,147,483,647
> 9 x 1018

Computer Memory

Main memory is divided
into many memory
locations (or cells)

9278
9279
9280
9281
9282
9283
9284
9285
9286

Each memory cell has a
numeric address, which
uniquely identifies it

Storing Information

9278
9279
9280
9281
9282
9283
9284
9285
9286

Large values are
stored in consecutive
memory locations

10011010
Each memory cell stores a
set number of bits (usually
8 bits, or one byte)

Storing a char

9278
9279
9280
9281
9282
9283
9284
9285
9286

char (8 bits = 1 byte)

Storing a short

9278
9279
9280
9281
9282
9283
9284
9285
9286

short (16 bits = 2 bytes)

Storing an int

9278
9279
9280
9281
9282
9283
9284
9285
9286

int (32 bits = 4 bytes)

Storing a long

9278
9279
9280
9281
9282
9283
9284
9285
9286

long (64 bits = 8 bytes)

Storing a float

9278
9279
9280
9281
9282
9283
9284
9285
9286

float (32 bits = 4 bytes)

Storing a double

9278
9279
9280
9281
9282
9283
9284
9285
9286

double (64 bits = 8 bytes)

Storing a Double

Address 0x08

Address 0x0C

Character Strings
• A string of characters can be represented as a

string literal by putting double quotes around the
text:

• Examples:
"This is a string literal."
"123 Main Street"
"X"

Characters
• A char variable stores a single character

• Character literals are delimited by single quotes:
'a' 'X' '7' '$' ',' '\n'

• Example declarations:

char topGrade = 'A';

char terminator = ';', separator = ' ';

• Note the distinction between a primitive character variable,
which holds only one character, and a String object, which
can hold multiple characters

Characters
• The ASCII character set is older and smaller than

Unicode, but is still quite popular

• The ASCII characters are a subset of the Unicode
character set, including:

uppercase letters
lowercase letters
punctuation
digits
special symbols
control characters

A, B, C, …
a, b, c, …
period, semi-colon, …
0, 1, 2, …
&, |, \, …
carriage return, tab, ...

ASCII Table

Escape Sequences
• What if we wanted to print a the quote character?
• The following line would confuse the compiler

because it would interpret the second quote as the
end of the string

printf ("I said "Hello" to you.");

• An escape sequence is a series of characters that
represents a special character

• An escape sequence begins with a backslash
character (\)

printf ("I said \"Hello\" to you.");

Escape Sequences
• Some C escape sequences:

Escape Sequence

\b
\t
\n
\r
\a
\"
\'
\\

Meaning

backspace
tab
newline
carriage return
beep
double quote
single quote
backslash

printf() function
• printf(“format string”, variable1, variable2, …);

• printf(“For int use %d”, myInteger);

• printff(“For float use %f”, myFloat);

• printf(“For double use %lf”, myDouble);

• printf(“For float or double %g”, myF_or_D);

• printf(“int=%d double %lf”, myInteger, myDouble);

scanf() function

• scanf(“format string”, &variable1, &variable2, …);

• scanf(“%d”, &myInteger);

• scanf(“%f”, &myFloat);

• scanf(“%lf”, &myDouble);

• scanf(“%d%f”, &myInteger, &myFloat);

Common Bugs
• Using & in a printf function call.
 printf(“For int use %d”, &myInteger); // wrong

• Using the wrong string in printf
 printf(“This is a float %d”, myFloat); // use %f not %d

• Not using & in a scanf() function call.
 scanf(“%d”, myInteger); // Wrong

• Using the wrong string in scanf()
 scanf(“%d”, &myFloat); // wrong; use %f instead of %d

PROBLEM SOLVING & PROGRAM DESIGN

Two phases involved in the design of any program:
• Problem Solving Phase

• Define the problem
• Outline the solution
• Develop the outline into an algorithm
• Test the algorithm for correctness

• Implementation Phase
• Code the algorithm using a specific programming

language
• Run the program on the computer
• Document and maintain the program

Structured Programming Concept
 Structured programming techniques

assist the programmer in writing
effective error free programs.

The elements of structured of programming

include:
• Top-down development
• Modular design.

The Structure Theorem:

 It is possible to write any computer
program by using only three (3) basic
control structures, namely:

• Sequential
• Selection (if-then-else)
• Repetition (looping, DoWhile)

ALGORITHMS
 An algorithm is a sequence of precise

instructions for solving a problem in a
finite amount of time.

Properties of an Algorithm:
 It must be precise and unambiguous
 It must give the correct solution in all

cases
 It must eventually end.

Developing an Algorithm

• Understand the problem
 (Do problem by hand. Note the steps)

• Devise a plan
 (look for familiarity and patterns)

• Carry out the plan (trace)

• Review the plan (refinement)

Understanding the Algorithm

 Possibly the simplest and easiest method to
understand the steps in an algorithm, is by using
the flowchart method. This algorithm is composed
of block symbols to represent each step in the
solution process as well as the directed paths of
each step.

Understanding the Algorithm

The most common block symbols are:

Understanding the Algorithm

 Problem Example

 Find the average of a given set of numbers.

Understanding the Algorithm - Problem
Example

Solution Steps - Proceed as follows:

1. Understanding the problem
 (i) Write down some numbers on paper and

 find the average manually, noting each
 step carefully.

 e.g. Given a list say: 5, 3, 25, 0, 9

Understanding the Algorithm - Problem Example

Solution Steps - Proceed as follows:

1. Understanding the problem
 (i) Write down some numbers on paper
 (ii) Count numbers | i.e. How many? 5
 (iii) Add them up | i.e. 5 + 3 + 25 + 0 +

9 = 42
 (iv) Divide result by numbers counted |

i.e. 42/5 = 8.4

Understanding the Algorithm - Problem Example

Solution Steps - Proceed as follows:

2. Devise a plan:
 Make note of NOT what you did in steps (i)

through (iv) above, but HOW you did it.

 In doing so, you will begin to develop the

algorithm.

For Example:

How do we count the numbers?
 Starting at 0 we set our COUNTER to 0.
 Look at first number and add 1 to COUNTER.
 Look at 2nd number and add 1 to COUNTER.
 …and so on,
 until we reach the end of the list.

For Example:

How do we add numbers?
 Let SUM be the sum of numbers in list.
 i.e. Set SUM to 0
 Look at 1st number and add number to SUM.
 Look at 2nd number and add number to SUM.
 …and so on,
 until we reach end of list.

For Example:

How do we compute the average?

 Let AVE be the average.

 then AVE = total sum of items .
 number of items

 = SUM .
 COUNTER

Understanding the Algorithm - Problem Example

Solution Steps - Proceed as follows:

3. Identify patterns, repetitions and familiar tasks.
 Familiar ity: Unknown number of items?
 i.e. n item
 Patterns : look at each number in the list
 Repetitions: Look at a number
 Add number to sum
 Add 1 to counter

Understanding the Algorithm - Problem Example

Solution Steps - Proceed as follows:

4. Carry out the plan
 Check each step
 Consider special cases
 Check result
 Check boundary conditions:
 e.g. What if the list is empty?
 Division by 0?
 Are all data values within specified range?

Understanding the Algorithm - Problem Example

Solution Steps - Proceed as follows:

5. Review the plan:
 Can you derive the result differently?
 Can you make the solution more general?
 Can you use the solution or method for

 another problem?
 e.g. average temperature or average grades

Understanding the Algorithm - Problem Example

 A flowchart representation of the algorithm for the above problem can be as

follows:

	Slide Number 1
	Variables
	Rules for valid variable names
	Variable Initialization
	Assignment
	Assignment Through scanf()
	Constants
	Constants
	#define primitive
	Some Primitive Data Types
	float and double analogy
	float and double analogy
	Numeric Primitive Data
	Computer Memory
	Storing Information
	Storing a char
	Storing a short
	Storing an int
	Storing a long
	Storing a float
	Storing a double
	Storing a Double
	Character Strings
	Characters
	Characters
	ASCII Table
	Escape Sequences
	Escape Sequences
	printf() function
	scanf() function
	Common Bugs
	PROBLEM SOLVING & PROGRAM DESIGN
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49

